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Abstract
We consider the idealized case of a one-component plasma with aligned fluid
velocity and current density. Constant density and pressure as well as zero
external magnetic field are also assumed. We show that suitably determined
axially symmetric helical current densities within a straight infinite cylinder are
exact self-consistent solutions of magnetohydrodynamics. Self-consistent here
means that the magnetic field is the field produced by the current density itself.
The equation of motion gives a nonlinear differential equation that relates the
axial vz(ρ) and the azimuthal vϕ(ρ) velocities as functions of radial distance ρ.
Prescribing one of these gives a specific solution for the other. The solutions
can be understood as a set of helix-shaped charged particle trajectories that
spiral self-consistently through the magnetic field that they themselves give
rise to. Four different specific exact solutions are given: (i) a single particle
outside a rectilinear line current, (ii) current on a thin cylinder, (iii) current
density with constant angular velocity and (iv) current density with constant
axial velocity, both within a cylinder of finite radius.

PACS numbers: 52.30.Cv, 52.20.Dq

1. Introduction

A starting point in plasma theory [1–3] is frequently the study of charged particle motion in
given external magnetic fields. A recent example of this is a study by Yafaev [4] on the motion
of a charged particle in the magnetic field from an infinite rectilinear line current. However,
when there are many moving particles involved they produce a magnetic field themselves.
For small systems this is often a negligible effect, but since the magnetic field, just like the
electric field, is a long-range field which, unlike the electric field, is not screened on the Debye
length scale, self-fields inevitably become important for larger systems. The nonlinear effects
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of these self-fields can be taken into account in magnetohydrodynamics (MHD) [1–3, 5, 6]
and here we will be interested in solutions with zero external field. We will call such solutions
describing the motion of charged particles in the magnetic field that they themselves produce
self-consistent.

These difficult nonlinear problems must normally be approached numerically. Problems
with cylindrical symmetry are, however, more likely to yield to analytical methods since they
become effectively two dimensional, and we will confine our attention to them. There is
extensive literature on such cylindrically symmetric helical flows [6–12]. So far, however,
most workers have neglected the inertia of the particles and either assumed, so-called plasma
equilibrium, j × B/c = ∇p [6, 7] or the force-free case, j × B = 0 [1, 5, 13–15].

There is also considerable experimental [16–19] and theoretical [20, 21] evidence that
flux tubes and helical current patterns form spontaneously in real plasmas. The stabilization
may be due to the existence of a conserved circulation theorem for plasmas [22]. Current
structures that minimize magnetic energy can be shown to be consistent with plasma thermal
equilibrium [23–25]. In view of all this the simple and fundamental, but highly idealized, new
solutions given below should be of some interest.

We will show that certain axially symmetric helical current densities, within a cylinder,
are exact solutions of ideal magnetohydrodynamics for a homogeneous plasma with constant
pressure and density as well as zero external field. It is also assumed that the fluid velocity
and the current density are aligned. The paper is organized as follows. In section 2 we discuss
the motion of a charged particle outside a line current. While trivial from the self-consistent
point of view this section serves to introduce notation and several concepts such as helical
trajectories and their pitch angle, the Lambert W-function, the dimensionless magnetic number
ν etc, that will appear again in subsequent sections. In section 3 we then present our general
assumptions about the current density and the magnetic field that is produced. After this (in
section 4) the special case of current only on a thin cylindrical surface is studied. For this
case, the equation of motion reduces to an algebraic equation and the solution depends only on
ν. The reader is now prepared for the more difficult case of current density within a cylinder
coming next. In section 5 one finds in the general case a class of solutions. In the two special
cases of constant angular velocity and constant axial velocity (section 6) explicit analytical
solutions are given.

2. Particle outside line current

First some notation and kinematics. We will use cylindrical coordinates, ρ, ϕ, z defined
through, x = ρ cos ϕ, y = ρ sin ϕ, z = z, in terms of Cartesian coordinates. We also use
the corresponding unit vectors eρ(ϕ) and eϕ(ϕ) time derivatives of which obey the relations
ėρ = ϕ̇eϕ, ėϕ = −ϕ̇eρ . A position vector is given by r = ρeρ + zez, and the corresponding
velocity is v = ρ̇eρ + ρϕ̇eϕ + żez, so that vρ = ρ̇ and vϕ = ρϕ̇. The equation for a helix of
radius ρ = R can now be written (ϕ̇ = ω = const) as

r(t) = Reρ(ωt) + vztez, (1)

where we use time t as parameter. Introducing the pitch angle θ through

vϕ = Rω = v sin θ, vz = v cos θ, (2)

or equivalently, vϕ/vz = tan θ , one gets

v(t) = v[sin θ eϕ(ωt) + cos θ ez], (3)

for the tangent (velocity) vector of this helix.
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The motion of a charged particle outside an infinite rectilinear current in a thin wire has
been solved, for both the classical and the quantum case, by Yafaev [4]. The main feature
of these solutions is that the net overall motion of the particle (if it moves at all) is a drift
parallel to the current, if positively charged, otherwise in the opposite direction. From this
one draws the general conclusion that such a wire current induces a parallel current among
charged particles outside it.

Here we will only consider one class of possible motions of the particle, the helical motion,
but we start from the general equations of motion. These can be found from the Lagrangian

L = 1

2
mv2 +

q

c
A ·v (4)

where m is mass, q electric charge, and A the vector potential. For a line current I along the
z-axis one finds that

A = −2I

c
ln ρez, (5)

using cylindrical coordinates. The corresponding magnetic field is B(r) = 2I
cρ

eϕ. Thus,

L(ρ, ρ̇, ϕ̇, ż) = 1

2
m(ρ̇2 + ρ2ϕ̇2 + ż2) − 2qI

c2
ż ln ρ, (6)

and, since the coordinates ϕ and z are cyclic one finds the constants of motion,

mρ2ϕ̇ = Lz, (7)

mż − 2qI

c2
ln ρ = pz. (8)

With these the ρ-equation of motion, mρ̈ − mρϕ̇2 + (2qI/c2)(ż/ρ) = 0, can be written as

mρ̈ = L2
z

mρ3
− pc

mρ
(pz + pc ln ρ), (9)

where we have introduced

pc ≡ 2qI

c2
. (10)

It is clear from this that for positive pc there will be stable solutions with ρ̈ = ρ̇ = 0, and ρ =
constant, corresponding to helical trajectories.

The radius R = ρ of these trajectories can be found by putting the left-hand side of (9)
equal to zero and solving for ρ. Maple [26, 27] gives

R = exp

{
1

2
W

[
2

(
Lz

pc

)2

exp

(
2
pz

pc

)]
− pz

pc

}
, (11)

for the radius of the helix. Here W is Lambert’s W-function [28–30], the inverse of the
function,

f (W) = W exp(W). (12)

It can be regarded as a less well-known elementary function and will appear again below.
For the helical trajectory we must have Lz = mR2ω, so that the angular velocity ϕ̇ = ω

must also be constant. Use of this in the ρ-equation of motion, with ρ̈ = 0, gives

mRω2 = pc

vz

R
, (13)
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so that ż = vz must also be constant. Comparison with equation (2) now gives

sin2 θ = pc

mv
cos θ, (14)

for the pitch angle θ of the helical trajectory of a single particle spiralling around an infinite
line current with speed v.

One can rewrite the constant pc/m here in a more illuminating form. Putting q = Ze,
and I = Q/T = Ne/T = (N/�)(�/T )e = (N/�)vde, for the line current, such that N is the
number of conduction electrons in a piece of wire of length �, and vd their drift speed, we get

pc

m
= 2Zvdν, (15)

where

ν ≡ Nre

�
and re ≡ e2

mc2
. (16)

Here re is the so-called classical electron radius. ν is a dimensionless ‘magnetic’ number.

3. Helical current density

We now proceed from a single particle to a current density in a plasma of constant pressure.
Apart from helical symmetry we also assume that we are dealing with a one-component
plasma. This means that the current is assumed to be due to one kind of particle, with mass
m, charge e and (constant) number density n, moving through a neutralizing background of
zero net current density. Usually one then thinks of electrons but the current may very well be
due to positive ions, or even composite quasi-particles, moving through a background electron
density of zero net current. In any case, the main feature here is the assumption of aligned
fluid velocity and current density.

In terms of cylindrical coordinates we thus take the electric current density to be

j(r) = env(r) = en[vϕ(ρ)eϕ(ϕ) + vz(ρ)ez], (17)

for ρ =
√

x2 + y2 < R, and j = 0 outside this cylinder. It is well known that if vϕ = 0
there will be pinching [15, 19, 31] and resulting instability. Briefly, the idea behind the
assumption of a helical current is that, for correctly chosen angular velocity, the centrifugal
force will balance the pinching force. More accurately, the azimuthal component corresponds
to a rotational motion whose centripetal acceleration is caused by the pinching force. The
result is a circular motion with constant radius, and no pinching.

Assuming constant pressure, the magnetohydrodynamic equation of motion is [3, 6]

mn

(
∂v

∂t
+ (v · ∇)v

)
= 1

c
j × B. (18)

Here

j = env = c

4π
∇ × B (19)

and we assume that j is the sole source of B (no external field) and that all para- or diamagnetic
responses of the plasma can be neglected. With our current (17) this vector equation will only
have one component. A simple calculation gives

−v2
ϕ(ρ)

ρ
= e

mc
[vϕ(ρ)Bz(ρ) − vz(ρ)Bϕ(ρ)] (20)

for the (radial) component along eρ(ϕ). One notes that the equilibrium MHD equations
∇ · v = ∇ · B = 0 and ∇ × (v × B) = 0 are valid in these calculations.
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The magnetic field from a helical line current can be found in the literature [32, 33].
For the present case of a continuous helical current density use of equation (19) and∮

B · dr = (4π/c)
∫

j · dS allows us to express the magnetic field components simply in
terms of the components of the velocity field.

One finds that

Bϕ(ρ) = 4π

c
en

1

ρ

∫ ρ

0
vz(ρ

′)ρ ′ dρ ′, (21)

and

Bz(ρ) = 4π

c
en

∫ R

ρ

vϕ(ρ ′) dρ ′. (22)

Note that for ρ � R we must have Bz(ρ) = 0, since we, essentially, are outside a family of
concentric infinite solenoids.

The assumption that the velocity and current density abruptly become zero at ρ = R may
seem unphysical. Since we are assuming ideal MHD, however, viscosity and resistivity are
assumed zero. Infinite velocity gradients are thus mathematically consistent, but this is of
course one of the idealizations that limit the applicability of the results obtained.

4. Current on cylinder surface

Let us first consider the case of current only on the surface of the cylinder. Formation of
helical cylindrical current sheets has in fact been discovered in numerical studies [11, 34].
Such a current density also corresponds to a current in a helical coil, a problem that has been
addressed by Jefimenko [35].

To study this limiting case we assume that vz(ρ) = v cos θ and vϕ(ρ) = v sin θ for
R − δ < ρ < R and zero elsewhere. Here θ is the pitch angle of the helix, see equation (2).
We thus have current density on a cylindrical shell of thickness δ. Calculating the magnetic
field is trivial using equations (21) and (22). Using these equation (20) becomes

− sin2 θ

1 − 1
2

δ
R

= 2πnreRδ

[
sin2 θ − 1 − 3

4
δ
R

1 − 1
2

δ
R

cos2 θ

]
. (23)

at ρ = R−δ/2. We now let δ/R → 0. Since, in this case, the number density n = N/(2πRδ�),
we find that the dimensionless constant

2πnreRδ → ν = Nre/�, (24)

see equation (16). This then results in an equation,

−sin2 θ = ν[sin2 θ − cos2 θ ], (25)

for the pitch angle.
The right-hand side here is essentially the magnetic force from the current distribution on

itself, and we see that it is zero when sin2 θ = cos2 θ , i.e. for a pitch angle of 45◦. This is in
agreement with the force-free coil of Jefimenko [35], example 13-8.2. The left-hand side is
due to inertia (mass times acceleration) and is needed for a self-consistent solution of freely
moving charges not constrained by a coil. In this case we may rewrite (25) and obtain

tan2 θ = 1

1 + 1/ν
, (26)

as an alternative equation for the pitch angle of a self-consistent current density on a cylindrical
shell.
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5. Constant angular velocity

We now proceed to a current density that fills the cylinder (ρ � R). As long as the magnetic
field Bz due to the angular velocity can be neglected equation (20) is solved by a constant
angular velocity ω and a constant translational velocity vz connected by

Rω =
√

2νvz. (27)

When the magnetic field due to the rotation becomes more important for larger ν-values, a
ϕ-pinch will develop, in addition to the z-pinch, and both can no longer be constant. In this
section, we find the exact solution for vz(ρ) assuming constant ω, in the next we find ω(ρ) for
constant vz.

If we introduce the definitions

F(ρ) ≡
∫ ρ

0
vz(ρ

′)ρ ′ dρ ′ (28)

G(ρ) ≡
∫ ρ

0
vϕ(ρ ′) dρ ′ (29)

we can write our equation of motion (20)

A

(
dG

dρ

)2

+ [G(R) − G(ρ)]ρ
dG

dρ
= F(ρ)

ρ

dF

dρ
. (30)

Here,

A ≡ mc2

4πe2n
, (31)

and the initial conditions are F(0) = G(0) = 0. Equation (30) gives a class of solutions; one
can solve the nonlinear differential equation for F if G is specified, or vice versa.

Using the number density n = N
πR2�

, where N/� is the number of particles per length
moving in the cylinder, we find that

A = 1

ν

R2

2
, (32)

where ν is given by equation (16). This shows that A has dimension area. The dimensionless
magnetic number ν should normally be at most order of magnitude unity, otherwise one cannot
neglect the response of the plasma [23]. For a cylinder of radius R we can write ν = nπR2re.
For typical ionospheric densities of n ≈ 1010 m−3 one finds that ν = 1 requires a radius R of
roughly 100 m, when re is the classical electron radius. If the classical proton radius is used
the cylinder radius R must be 4.5 km in order for ν to reach unity. For fusion plasmas with
n ≈ 1020 m−3 these radii reduce to 1 mm and 4.5 cm, respectively.

We first assume that the rotational motion is a rigid rotation with angular velocity ω and
put vϕ(ρ) = ρω. The function G(ρ) is then G(ρ) = ωρ2/2 and equation (30) gives the
differential equation

F(ρ)
dF

dρ
= (ωR)2

2

[
1

ν
+ 1 −

( ρ

R

)2
]

ρ3, (33)

for F and ρvz = dF/dρ. Solving this equation is trivial. One finds that

vz(ρ) = ωR√
ν

1 + ν[1 − (ρ/R)2]√
1 + ν[1 − (2/3)(ρ/R)2]

, (34)



Magnetohydrodynamic self-consistent exact helical solutions 9837

ρ

v (z ρ)

Figure 1. Plot of the function vz(ρ) of equation (34) for ω = R = 1 and ν = 1/10, 1/5, 1/2, 5 in
order from top to bottom.

when vϕ(ρ) = ρω; in this case the axial velocity vz decreases with radius and vz(R) ≈
vz(0)

(
1 − 2ν

3

)
. Some examples of this function are plotted in figure 1. Thus we have found

our exact solution of the magnetohydrodynamic equation in the rigid rotation case. One
notes that the increasing ϕ-pinch with increasing ν-value requires that vz(ρ) decreases with
increasing ρ.

6. Constant axial velocity

If we assume that vz(ρ) = uz = constant, within the cylinder, we get

F(ρ)

ρ

dF

dρ
= 1

2
u2

zρ
2, (35)

and use of this in the right-hand side of equation (30) gives the differential equation

A

(
dG

dρ

)2

+ [G(R) − G(ρ)] ρ
dG

dρ
= 1

2
u2

zρ
2 (36)

for G and vϕ = ρω(ρ) = dG/dρ. The initial condition is G(0) = 0.
Analytical solution is more difficult in this case because of the need to know G(R) in

order for the differential equation to be explicit. The differential equation can be rewritten as

R2ω2(ρ) + 2ν[G(R) − G(ρ)]ω(ρ) = νu2
z . (37)

If we put ρ = R here we get the exact expression,

Rω(R) = √
νuz, (38)

for the surface angular velocity. For small ν the angular velocity should vary slowly for
consistency with the result of the previous section. Assuming ω(ρ) ≈ ω(0) = constant, one
obtains G(ρ) ≈ ρ2ω(0)/2, from (29). Use of this in (37) gives that

Rω(0) ≈
√

ν

1 + ν
uz, (39)

at ρ = 0. Thus ω(ρ) increases with ρ and ω(R) ≈ √
1 + ν ω(0).
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ρ

ρω (   )

Figure 2. Plot of the function ω(ρ) of equation (45) for uz = R = 1 and the same ν-values as in
figure 1, that is, ν = 1/10, 1/5, 1/2, 5, ordered from bottom and up.

We now ignore the problem with the G(R)-value and simply try to solve the differential
equation

A

(
df

dρ

)2

+ [B − f (ρ)]ρ
df

dρ
= 1

2
ρ2. (40)

for f = G/uz, with B = G(R)/uz. Maple 8 [26, 27] produces a set of four output solutions.
Only two of these are zero at ρ = 0. Of these only one is increasing with ρ and clearly the
one that interests us here. It can be simplified to give

G(ρ) = uz


B +

√
A

2

{
1 − W

(
2A exp

[
C−ρ2

A

])}
√

W
(
2A exp

[
C−ρ2

A

])

 (41)

where

C ≡ B2 + A − A ln 2 + A ln
(
A + B2 + B

√
B2 + 2A

) − 2A ln A + B
√

B2 + 2A, (42)

and W is Lambert’s W-function [28–30] defined in (12). Putting uz = R = 1 one can solve
for B = G(1) and find

B = G(1) = 1

2

W(exp[1 + 2ν]) − 1√
νW(exp[1 + 2ν])

. (43)

Since A = 1/2ν the constant C is then known and (41) is an explicit solution with ν as
parameter.

The derivative of W is [30]

dW

dx
= 1

[1 + W(x)] exp[W(x)]
= W(x)

x[1 + W(x)]
. (44)

Using this and the fact that dG/dρ = vϕ(ρ) = ρω(ρ) we find that the angular velocity, for
uz = R = 1, is given by

ω(ρ) =
√

ν

W(exp[1 + 2ν − 2νρ2])
, (45)
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as a function of radius ρ. Some examples of this function for a selection of ν-values are plotted
in figure 2.

We found above that when the magnetic field due to the angular velocity can be neglected
a constant ω balances the z-pinch for constant vz. When the magnetic field of the rotation
becomes non-negligible for larger ν-values a ϕ-pinch develops and since we here demand that
vz(ρ) be constant (= uz) it has to be balanced by an increasing angular velocity. This explains
qualitatively the results of figure 2.

7. Discussion and conclusions

How must a cylindrical current distribution rotate in order to balance the pinching effect of
its own magnetic field? That is the simple basic question that is answered by this work.
Analytical solution was possible in all the specific cases treated above, but for the case of
a constant translational velocity in the cylinder it required computers as well as some skill.
The relevance of these idealized solutions for real plasmas can, of course, be questioned.
In general, pressure as well as rotation will play a role. One reason for investigating these
solutions is the well-known instability when pressure alone is balancing the pinching.

Concerning stability of our solutions, however, we can only offer the following heuristic
and intuitive observations. The assumption of a constant density solution makes the pressure
term vanish, but deformations of the cylinder will inevitably change the density and pressure
will no longer be constant. Any changes in the total density will only cause acoustic oscillations
about the equilibrium density. Any changes of the density of one species of charged particles
will cause plasma oscillations about the equilibrium zero charge density. The solution
is probably also stable against small random changes of the current density since such
fluctuations are prevented from growing by the magnetic field. Nijboer et al [10] have
investigated the stability properties of a related system.

The cited experimental, numerical and theoretical work also indicates that our class of
solutions should possess some stability. After all, the solution consists of a bunch of charged
particle trajectories passing self-consistently through their own magnetic field. If the solutions
are stable enough to survive deformation they may in fact be precursors, so to speak, of
the stable flux tubes of Faddeev and Niemi [21], which they identify with the filaments that
plasmas frequently exhibit.
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